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We introduce topological methods for quantifying spatially heterogeneous dynamics, and use these tools to
analyze particle-tracking data for a quasi-two-dimensional granular system of air-fluidized beads on approach
to jamming. In particular, we define two overlap order parameters, which quantify the correlation between
particle configurations at different times, based on a Voronoi construction and the persistence in the resulting
cells and nearest neighbors. Temporal fluctuations in the decay of the persistent area and bond order parameters
define two alternative dynamic four-point susceptibilities �A��� and �B���, well suited for characterizing spa-
tially heterogeneous dynamics. These are analogous to the standard four-point dynamic susceptibility �4�l ,��,
but where the space dependence is fixed uniquely by topology rather than by discretionary choice of cutoff
function. While these three susceptibilities yield characteristic time scales that are somewhat different, they
give domain sizes for the dynamical heterogeneities that are in good agreement and that diverge on approach
to jamming.

DOI: 10.1103/PhysRevE.76.021306 PACS number�s�: 45.70.�n, 47.55.Lm, 64.70.Pf, 02.40.Pc

I. INTRODUCTION

The dynamics in both thermal and driven systems become
increasingly heterogeneous �1–3� on approach to jamming,
where a control parameter such as temperature, packing frac-
tion, or driving rate is varied to the point that all rearrange-
ments cease �4,5�. Such spatially heterogeneous dynamics
�SHD� may take the form of intermittent strings or swirls of
neighboring particles that follow one another in correlated
fashion from one packing configuration to another. Observa-
tions of SHD have been reported for coarsening �6,7� and
sheared �8� foams, for dense colloidal suspensions �9–11�,
and for driven granular systems �12,13�. Quantification of
SHD may be accomplished by a dynamic four-point suscep-
tibility �4�l ,�� defined in terms of density correlations across
intervals of both space and time �14�. Bounds on �4�l ,��
have been inferred from standard measurements of dielectric
susceptibility for glass-forming liquids and of dynamic light
scattering for dense colloidal suspensions �15�. Direct mea-
surements of �4�l ,�� have been reported for quasi-two-
dimensional granular systems, where particle motion was ex-
cited by shear �16� and by a fluidizing upflow of air �17�. In
the former, �4�l ,�� was measured vs space and time at a
fixed packing fraction; in the latter, �4�l ,�� was measured vs
time at fixed l for several packing fractions. In both Refs.
�16,17�, the dynamic susceptibilities are based on temporal
fluctuations of an overlap order parameter; however, the
former employs a Gaussian cutoff function while the latter
uses a step function.

In this paper we conduct further measurements and analy-
ses of spatially heterogeneous dynamics in a system of air-
fluidized beads similar to Ref. �17�. Our primary extension of
Ref. �17� concerns the cutoff function in the overlap order
parameter. First we explore the length dependence of �4�l ,��
by varying the cutoff distance l. Second, we remove the ar-
bitrariness in choice of cutoff function by using topological
measures of overlap. In particular we build upon the concept
of persistence, introduced to help characterize the coarsening
of spin domains in magnets or of bubbles in foams �18,19�.

As a topological measure of overlap for particulate systems,
we define a normalized, dimensionless persistent area as the
fraction of space that remains inside the same Voronoi cell
after a given time interval. We also introduce a second topo-
logical measure of configurational overlap in terms of persis-
tent bonds, i.e., the fraction of nearest-neighbor pairs that
remain neighbors after a given time interval. While both per-
sistent area and persistent bond order parameters vanish with
time, the latter can exhibit a much slower decay if a string of
particles follow one another over a long distance. After dis-
cussion of such cutoff functions, we use the resulting four-
point susceptibilities both to explore the connection of SHD
to local structure and to observe the evolution of SHD on
approach to jamming. Finally we consider possible artifacts
due to finite experiment duration.

II. METHODS AND BACKGROUND

The granular system under study here is a quasi-two-
dimensional monolayer of spheres that roll without slipping
due to a fluidizing upflow of air, as in Refs. �17,20,21�. The
spheres are steel with an equal number of ds=0.318 cm and
dl=0.397 cm diameter sizes. This is the same system as in
Ref. �17�, though here most run durations are 120 min rather
than just 20 min. The steel beads are confined in a circular
flat sieve with a diameter of 17.7 cm and a mesh size of
150 �m. Energy is injected by a uniform flow of air through
the sieve at a flux that is high enough to randomly drive the
balls by turbulence �Re�103� without causing levitation.
The flux is increased from 560 to 700 cm/s as the area frac-
tion is decreased from �=0.8 to 0.6, to ensure that the low-
density systems are fluidized. Three feet above the sieve are
six incandescent lights aligned in a ring 1 ft in diameter. At
the center of the ring is a 120 Hz Pulnix 6710 video camera
with a 644�484 array of 8-bit square pixels and a zoom
lens. Light reflects specularly off the tops of the beads and is
imaged by the camera. Bright spots are tracked so that the
positions ri�t� are known for all beads i= �1,2 , . . . ,N� and for

PHYSICAL REVIEW E 76, 021306 �2007�

1539-3755/2007/76�2�/021306�9� ©2007 The American Physical Society021306-1

http://dx.doi.org/10.1103/PhysRevE.76.021306


all times t during the entire experiment. Further details are
available in Refs. �20,21�.

By increasing the fraction � of area occupied by spheres,
at fixed gas flux, this system exhibits a jamming transition at
point J, such that the average bead kinetic energy vanishes
linearly on approach to random close packing at about �c
=0.83 �20�. Near this transition, the bead dynamics exhibit
the usual sequence of crossovers from ballistic, to subdiffu-
sive, to diffusive motion as a function of delay time. Spa-
tially heterogeneous dynamics occur in the subdiffusive re-
gime, particularly at delay times such that the beads are
breaking out of their cages and beginning to diffuse. This is
illustrated graphically in Figs. 1�a�–1�c�, which show ex-
ample average velocity vector fields �r /� for three different
delay times �; the area fraction and delay time for each im-
age are chosen to highlight motion in each of the three re-
gions of phase space, as specified in Fig. 1�d�. For both very
short and very long delay times, corresponding to ballistic
and diffusive regimes, the magnitude and direction of the
average velocities for neighboring beads are completely un-
correlated. However, at intermediate delay times, Fig. 1�b�,
corresponding to subdiffusive motion, a few stringlike clus-
ters of neighboring beads move in swirls while other beads
move relatively little. As time evolves, such swirls come and
go in different regions of the sample so that the dynamics
become completely ergodic. This is best seen by a video of
the average velocity field �22�.

Now we begin the central task of this paper, which is to
quantify the spatially heterogeneous nature of the dynamics

depicted qualitatively in Fig. 1. For this, a standard tool is
the four-point dynamic susceptibility �4�l ,��, as reviewed in
Ref. �14�. This may be approximated from temporal fluctua-
tions in the instantaneous self-overlap order parameter, de-
fined here as

Qt�l,�� =
1

N
�
i=1

N

wi, �1�

where N is the number of beads and wi is a cutoff function
that equals 1 if the displacement of bead i remains less than
l across the whole time interval t→ t+� and that equals 0
otherwise. Whereas here and in Ref. �17� wi is a step-
function cutoff, in Ref. �16� it is a Gaussian. In either case
the average self-overlap order parameter and the four-point
susceptibility are given by moments of Qt�l ,�� averaged over
all times t as follows:

Q�l,�� = 	Qt�l,��
 , �2�

�4�l,�� = N�	Qt�l,��2
 − 	Qt�l,��
2� . �3�

Note that �4�l ,�� is independent of system size because the
variance scales as 1 /N. Also note that �4 grows in proportion
to the variance, or heterogeneity, in the displacements of dif-
ferent beads across a given time interval.

Example results for the space and time dependence of
Q�l ,�� and �4�l ,�� are shown in Fig. 2, for one particular
area fraction �=0.792. In particular, these two functions are
plotted vs delay time � for several different values of l. By
construction Q�l ,�� decays from one to zero as a function of
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FIG. 1. �Color online� �a�–�c� Example average velocity vector
fields �r /� for time intervals � and bead area fractions � as speci-
fied in �d�. At short times ���b as in �a�, the bead motion is bal-
listic and there are no spatial correlations. At very long times, as in
�c�, the bead motion is diffusive and there are no spatial correla-
tions. At intermediate times �c����r, the bead motion is subdif-
fusive with beads remaining temporarily trapped in a cage of fixed
neighbors. Toward the end of this caging regime, as in �b�, the bead
motion exhibits spatially heterogeneous dynamics in the form of
stringlike swirls in the average velocity vector field. This figure was
generated from data described in Ref. �20�, where the bead diam-
eters are 0.873 and 0.635 cm, and where precise definitions of time
scales are given in terms of the logarithmic slope of the mean-
squared displacement vs time.
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FIG. 2. �Color online� Time dependence of �a� the average over-
lap order parameter and �b� the corresponding four-point suscepti-
bilities, defined by Eqs. �2� and �3�, respectively, for air-fluidized
beads at an area packing fraction of �=0.792. Different curves are
for different cutoff lengths l as labeled. The thick green curve is for
the standard cutoff threshold l=0.5ds given by half the small-bead
diameter.
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�. For increasing l, the observed decay becomes somewhat
sharper, but more importantly the location of the decay
moves to longer delay times, since the beads take longer to
move a larger distance. By contrast the susceptibility �4�l ,��
is a peaked function of �, which vanishes at both early and
late times. By comparison of Figs. 2�a� and 2�b� it is evident
that the peak of �4�l ,�� is located at the characteristic decay
time of Q�l ,��. Furthermore, the height of the peak depends
on l, such that it vanishes for large and small l and becomes
a maximum for l on the order of the bead size. Thus in
Ref.�17� the overlap threshold was set equal to the radius of
the small beads, l=0.5ds, and the dynamic susceptibility was
considered only as a function of time, �4���=�4�0.5ds ,��.

Results for Q��� and �4��� vs � are displayed in Figs. 3�a�
and 3�b� for a sequence of area fractions. This reproduces
Fig. 3�c� of Ref. �17�, with the identical system but with a
longer run duration. As seen before, the location �4

* of the
peak in �4��� moves to longer times on approach to jam-
ming. Furthermore, the peak height �4

* increases concur-
rently. Thus the dynamics become not only slower but more
spatially heterogeneous on approach to jamming. The size of
the spatial heterogeneities represents a dynamical correlation
length 	, which diverges at jamming; such behavior was first
reported in �17�, and will be discussed further in Sec. IV.
Note that for all area fractions the value of the overlap order
parameter is nearly constant, Q*=0.48±0.06, when the sus-
ceptibility reaches its peak.

The dynamical correlation length may be deduced from
the value of the self-overlap order parameter and the dy-
namic susceptibility at its peak, using the following physical
picture. For a system of N total beads, we wish to know the
typical number M of heterogeneities and more importantly
the typical number n of beads in each of these fast-moving
domains. Since the contribution to the self-overlap order pa-

rameter is Q0=0 from the nM highly mobile beads inside
domains, and is Q1=1 from the other N−nM less mobile
beads, the average self-overlap order parameter at �4

* is Q*

�	Qt��4
*�
= �Q0�nM�+Q1�N−nM�� /N=1−nM /N. However,

the instantaneous value of Qt��4
*� varies with time t because

of counting statistics �M =�M in the number of heteroge-
neous domains actually present at any instant. Therefore, the
peak dynamic susceptibility is �4

*�N��Q*�2=n2M /N. By
eliminating M /N in these expressions for Q* and �4

*, the
typical number of particles in each fast-moving dynamic het-
erogeneity is found to be

n4 =
�4

*

1 − Q* . �4�

Since Q* is nearly constant, as observed in Fig. 3, the num-
ber of beads per domain is directly proportional to the peak
susceptibility �4

*. If the domains are compact, then the dy-
namical correlation length scales as 	 /dsn1/d, where ds is
the bead diameter and d is dimensionality �16,17�. If the
domains are strings, then the dynamical correlation length is
	 /dsn. If fluctuations �n in domain size are also included,
then the left-hand side of Eq. �4� is slightly modified to
n�1+ ��n /n�2�.

To our knowledge, the counting arguments leading to Eq.
�4� have not been previously published. While it seems com-
mon knowledge that the peak susceptibility depends upon
domain size, we have found no arguments or calculations in
prior literature to support or quantify the relation.

III. TOPOLOGICAL PERSISTENCE

The dynamic susceptibility �4�l ,�� discussed in the previ-
ous section relies upon a somewhat arbitrary choice for a
cutoff function w in Eq. �1�. Furthermore, since � is the more
interesting parameter, it also relies upon a particular choice
of cutoff length l, so that spatially heterogeneous dynamics
may be studied as a function of delay time. In this section,
we propose two alternative dynamic susceptibilities, in-
tended for the same purpose, in which the role of the cutoff
function and cutoff length are determined uniquely by topo-
logical considerations. Both are based upon the Voronoi tes-
sellation constructed from the particle positions at each in-
stant of time.

A. Persistent area

An order parameter for quantifying the degree of overlap
between particle configurations may be constructed by con-
sidering the fraction of the sample which remains inside the
same Voronoi cell across a time interval t→ t+�. In particu-
lar, we define the instantaneous persistent volume as

At��� =
1

V
� at�r,��dV , �5�

where V is the sample volume; at�r ,��=1 if the point r re-
mains inside the same Voronoi cell across the whole time
interval t→ t+�, and at�r ,��=0 if the point r becomes en-
closed by another Voronoi cell. Since our experiments are in
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FIG. 3. �Color online� Time dependence of �a� the average over-
lap order parameter and �b� the corresponding four-point suscepti-
bilities, for air-fluidized beads at various area fractions, as labeled.
The cutoff threshold is l=0.5ds.
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two dimensions, we shall refer to Eq. �5� as the instantaneous
persistent area. By construction, it decays monotonically
from one to zero as the beads move a distance comparable to
their size. Thus the persistent area is similar to the previous
self-overlap order parameter Qt�l ,�� with a cutoff length l set
by bead size.

A graphic illustration of the contribution at�r ,�� of each
point in the sample to the average over space given by Eq.
�5� is shown in Fig. 4 for a sequence of increasing delay
times �. Pixels are colored black for at,��r�=1 and white
otherwise; therefore, the sample is all black for �=0 and it
becomes progressively white for increasing �. As illustrated
in Fig. 4, white regions first appear at short � near the bound-
ary of the initial Voronoi cells. At larger � the white regions
thicken as the persistent black regions at the cell cores
shrink. Eventually each black spot vanishes. The graphics
here can be compared with results for a coarsening foam in
Ref. �19�, where domains are defined physically by actual
bubbles rather than by a Voronoi construction. For dynamics
that are spatially uniform, the persistent area vanishes uni-
formly at the same rate throughout the whole sample, with
only random uncorrelated variation between neighboring re-
gions. This is not the case in Fig. 4, where the spatially
heterogeneous nature of the dynamics is evident in the long
swaths of white caused by chains of fast-moving beads. This
is most pronounced for delay times between about 5 and
50 s, and corresponds closely with structure in the average
velocity field seen, for example, in Fig. 1.

The average persistent area and a dynamical susceptibility
quantifying spatial heterogeneity may now be defined, in
analogy with the previous section, by moments of At��� av-
eraged over all times t:

A��� = 	At���
 , �6�

�A��� = N�	At���2
 − 	At���
2� . �7�

The variance is multiplied by the number N of beads in the
sample, so that �A��� is independent of system size. As an
example, the decays of At��� vs � plotted in Fig. 5�a� display
considerable variation for different choices of starting time t.
The resulting susceptibility, �A���, plotted in Fig. 5�b�, dis-

plays a peak as expected near the characteristic decay time
for the average persistent area. The height of this peak, �A

* ,
and the corresponding average persistent area A*, give the
typical number of beads in the dynamic heterogeneities as

nA =
�A

*

�A1 − A0��A1 − A*�
, �8�

by the same arguments giving Eq. �4�. Here, A0 is the con-
tribution to the persistent area by the beads in the fast-
moving heterogeneities and A1 is the contribution from the
remaining less mobile beads. Based on graphics like Fig. 4,
we estimate A0�0 and A1�3/8. To remove this uncertainty,
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FIG. 4. Persistent area images
vs delay time �, as labeled, for air-
fluidized beads at an area packing
fraction of �=0.792. The shrink-
ing black regions represent persis-
tent area, which has remained in-
side the same Voronoi cell since
zero delay time. Each graphic rep-
resent the central 7.5 cm diameter
region of the entire 17.7 cm diam-
eter sample. The dynamics are
most spatially heterogeneous at
delay time �A

* =34 s where the sus-
ceptibility �A��� reaches a
maximum.
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FIG. 5. �Color online� Time dependence of �a� the instantaneous
and average persistent areas, defined by Eqs. �5� and �6�, respec-
tively, and �b� the corresponding dynamic susceptibility, defined by
Eq. �7�, for air-fluidized beads at an area packing fraction of �
=0.792. The starting times t for the instantaneous persistent areas
are separated by 180 s, and thus represent statistically independent
initial configurations.
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an alternative approach might be to enforce A0=0 and A1
=1 by defining an overlap order parameter such that the con-
tribution from each bead is a step function that drops from
one to zero when all its persistent area vanishes.

The behavior of A��� and �A��� is displayed in Fig. 6 for
different bead packing fractions �, using the same sequence
of values and the same symbol and color codes as in Fig. 3.
The decay time of A��� and the peak position �A

* of �A���
coincide and become longer for increasing � on approach to
jamming. For all area fractions, the value of the persistent
area is nearly constant, A*=0.24±0.04, when the susceptibil-
ity reaches its peak. The peak height �A

* also increases as the
dynamics slow down, indicative of a diverging dynamical
correlation length. This behavior strongly parallels that in
Fig. 3 based on an overlap order parameter with a particular
step-function cutoff. In fact, the ratio of peak heights is
nearly constant for all area fractions: 	�A

* /�4
*
=0.10±0.02.

The only striking qualitative difference is that A��� exhibits a

two-step decay at high �, whereas Q��� does not. This is
because the persistent area begins to decay at very short de-
lay times, when the beads experience small-displacement
ballistic motion, rattling within a “cage” of unchanging near-
est neighbors. The shoulder in A��� corresponds to the cross-
over from ballistic to subdiffusive motion observed in the
mean-squared displacement. For a typical cutoff l compa-
rable to bead size, this so-called 
 relaxation is not detected
by the traditional overlap order parameter Q���, which de-
cays only due to the cage-breakout � relaxation process. Fur-
thermore, no shoulder is evident in Q�l ,�� for any choice of
l in Fig. 2. Besides being naturally and uniquely defined by
topology, the persistent area order parameter thus has the
added advantage of being able to capture the two-step 
 and
� relaxation processes characteristic of glass-forming sys-
tems.

B. Persistent bond

A second order parameter may be defined naturally from
the set of nearest neighbors, or “bonds,” specified by the
Delaunay triangulation dual to the Voronoi construction. In
particular, we define the instantaneous persistent bond num-
ber Bt��� as the fraction of all bonds at time t that remain
unbroken across the interval t→ t+�. The progressive break-
ing of bonds throughout the sample is illustrated in Fig. 7, at
the same area fraction as in the persistent area fraction dia-
grams of Fig. 4. By comparison, the persistent bond number
decays more slowly, due to neighboring beads that move a
large distance while remaining next to one another. Also by
comparison, the stringlike swirls of the dynamic spatial het-
erogeneities are less evident by casual inspection of the per-
sistent bond diagrams than for the persistent area diagrams.
Nevertheless, bond lifetimes and the spatial heterogeneity of
broken bonds have been used to characterize simulations of
glassy systems �23�.

The average persistent bond number, the related dynamic
susceptibility, and the size of the dynamic heterogeneities,
respectively, are given in precise analogy with the previous
sections as follows:

B��� = 	Bt���
 , �9�
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FIG. 6. �Color online� Time dependence of �a� the average per-
sistent area, and �b� the corresponding dynamic susceptibility, for
air-fluidized beads at different area fractions as labeled.
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FIG. 7. Persistent bond images
vs delay time �, as labeled, for air-
fluidized beads at an area packing
fraction of �=0.792. Each graphic
represent the central 7.5 cm diam-
eter region of the entire 17.7 cm
diameter sample. The dynamics
are most spatially heterogeneous
at delay time �B

* =180 s where the
susceptibility �B��� reaches a
maximum.
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�B��� = N�	Bt���2
 − 	Bt���
2� , �10�

nB =
�B

*

�B1 − B0��B1 − B*�
. �11�

The trends in this order parameter and susceptibility are dis-
played vs � in Figs. 8�a� and 8�b� for the same sequence of
area fractions as in the analogous plots based on self-overlap
and persistent area. Here, as before, the order parameter de-
cays more slowly and the peak height increases as the area
fraction is increased toward jamming. Similar to Q���, but in
contrast with A���, the average persistent bond number B���
exhibits a one-step decay. By inspection, we estimate B0
�1/3 and B1�2/3. Note that, for all area fractions, the
value of the persistent bond is nearly constant, B*

=0.46±0.08, when the susceptibility reaches its peak. Also,
the ratio of peak susceptibility heights is nearly constant:
	�B

* /�4
*
=0.13±0.05.

IV. COMPARISONS

Three dynamic susceptibilities, �4���, �A���, and �B���,
have now been discussed for characterizing spatial dynamic
heterogeneities in terms of the variance of order parameters
based respectively on self-overlap, persistent area, and per-
sistent bond. The nature of these order parameters, and their
possible relation with local structure, are compared in Fig. 9
by snapshots of the system at eight different instants in
times. Here the time increment is chosen as �A

* /2, half the
time delay at which �A��� reaches its peak, so that there is a
reasonable balance of continuity and evolution between suc-
cessive snapshots. While each row represents a different
time, the first three columns represent local structure and the

last three represent local dynamics. In terms of structure,
Voronoi cells are shaded according to �a� their number of
sides; �b� their circularity shape factor, equal to perimeter
squared divided by 4� times the area �20,24,25�; and �c� the
reciprocal of their area, as a measure of the local density. In
terms of dynamics, the average velocity vectors and the per-
sistent areas are depicted at �A

* and the persistent bonds are
depicted at �B

* , so that the spatial dynamic heterogeneities are
maximally emphasized. By inspection, we note the following
points. First, the spatial structure of the dynamics revealed
by the average velocity vectors and the persistent areas is
clearly related. Both measures give a clear feeling for string-
like swirls of neighboring beads that are intermittently ex-
cited against a background of less mobile beads. By contrast,
the persistent bonds give no such feeling of motion. And
while there are more broken bonds near the fast-moving do-
main, the correspondence is not one to one because neigh-
boring mobile beads may remain nearest neighbors. Second,
there is no apparent correlation between any of the measures
of structure and the location of the spatial dynamic hetero-
geneities. It is not evident how to predict when or where a
dynamic heterogeneity will occur based on usual measures
of local structure.

Next we compare the characteristic times and domain
sizes for dynamic heterogeneities, as deduced from the three
order parameters and susceptibilities. The growth of these
scales as a function of increasing bead area fraction are dis-
played in Fig. 10. Note that the time scales are different for
the three susceptibilities. As expected, �B

* is the largest while
�A

* is only slightly larger than �4
*. However all three times

appear to grow in proportion to one another, suggesting that
they probe similar physics. Further reinforcing this point, the
domain sizes are indistinguishable for the three susceptibili-
ties. Thus the overlap order parameter with discretionary
choice of step-function cutoff at l=0.5ds is not as arbitrary as
it may seem, since it reveals the same picture of spatially
heterogeneous dynamics as the persistent areas and bonds,
which are uniquely defined by topology.

Next we consider the functional form of the growth of
dynamical heterogeneities on approach to jamming, exactly
per Ref. �17�. Thus, in Figs. 10�a� and 10�b�, data for the
peak times and domain sizes are shown on log-log plots vs
��−�c�−1. With a single choice of �c=0.79±0.02, the data
can all be well fitted to a power of ��−�c�−1 where the ex-
ponent =0.72±0.04 for the domain sizes and z
=1.03±0.06 for the peak times. Such power-law divergences
on approach to �c below random close packing are consis-
tent with a mode-coupling theory, where the mode-coupling
temperature is above the glass-transition temperature. The
value of the correlation length exponent  is consistent with
prior simulation results based on finite-size scaling analysis
of random close packing fraction �26�, on the size of the
disturbance away from a perturbation �27�, and on scaling
analysis of stress and strain rate �28�. Slightly smaller expo-
nents for the dynamical correlation length have been pre-
dicted for the approach �c from above �29–31�. The ob-
served time scale exponent is less than that for simulation
results based on stress relaxation �32,33�, for the same model
as in Ref. �28�. However, the power-law description is not
unique. As for the glass transition in molecular liquids, the
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FIG. 8. �Color online� Time dependence of �a� the average per-
sistent bond, and �b� the corresponding dynamic susceptibility, for
air-fluidized beads at different area fractions as labeled.
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growth of characteristic time and length scales can also be
well fitted to the Vogel-Tammann-Fulcher �VTF� equation,
exp�E / ��−�0 � �. Thus, in Figs. 10�c� and 10�d�, data are
shown on semilogarithmic plots vs ��−�0�−1. With a single
choice of �0=0.83±0.01, which corresponds to random

close packing, the data follow the VFT equation where E
=0.20±0.01 for the peak times and E=0.14±0.01 for the
domain sizes. Altogether, as reported in Ref. �17�, the growth
of dynamical time and length scales on approach to point J in
the system of air-fluidized beads happens in close quantita-
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FIG. 9. Graphic illustration of three measures of structure and three measures of dynamics, at eight instants of time. Column 1: Voronoi
cells shaded according to their number of sides Z; cells with many sides are darker than cells with few. Column 2: Voronoi cells shaded
according to their circularity �, defined by perimeter squared divided by 4� times area; more circular cells are darker than less circular.
Column 3: Voronoi cells shaded according to local density, proportional to the reciprocal of their area and averaged over the time interval �A

*;
cells with low local density are colored darker than cells with high local density. The standard deviation of density values equals about
one-tenth the average density. Columns 4–6: Average velocity vector fields, persistent areas, and persistent bonds, respectively, at delay
times as labeled.
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tive analogy to the glass transition in liquids.
Before closing we make one final comparison of the four-

point dynamic susceptibility for runs of different duration. In
particular, we compute peak heights �̃4

* for subsets of dura-
tion T of the full 120 min runs and normalize by the long-
duration value �4

*. Results are plotted in Fig. 11 vs duration
time, normalized by the long-duration peak time �4

*, for all
area fractions considered above. Note that the normalization
causes all data to collapse, even though peak heights and
times grow on approach to jamming. Also note that the long-
duration value of the peak height is attained only if the run is

about ten times longer than the peak time �4
*. Intuitively, if a

run is not very long compared to the decay time of the over-
lap order parameter, then too few configurations are sampled
and the variance is underestimated. This effect will limit the
proximity to which point J may be approached. For example,
if run duration is held fixed and the area fraction is gradually
increased, then the peak height and the corresponding dy-
namical correlation length will initially grow but will even-
tually appear to decrease as �4

* grows beyond about one-tenth
of the run duration. This can be seen in the inset of Fig. 11.
To eliminate such erroneous finite-time artifacts, the experi-
mental observation time must be at least a decade longer
than the time it takes for the overlap order parameter to van-
ish. Conceivably, an alternative might be to take a smaller
cutoff in the self-overlap order parameter or to alter the pro-
portionality constant relating susceptibility and domain size
according to the experimental conditions.

V. CONCLUSION

Spatially heterogeneous dynamics may be characterized
successfully using four-point susceptibilities based on many
choices for the configurational order parameter. For a self-
overlap order parameter with the seemingly ad hoc choice of
a step-function cutoff at ds /2, the characteristic dynamical
correlation length for the size of intermittent mobile domains
is indistinguishable from those based on persistent areas and
bonds in a unique topological description. This agreement
requires a physical picture for how to deduce domain size
from the peak of the susceptibility, as in Eqs. �4�, �8�, and
�11�. Nevertheless, some differences still exist in the detailed
form of the three susceptibilities. For example the peak times
all differ, though they always remain in constant proportion
to one another. At early times, below the peak, the persistent
area is the first to begin its decay since self-overlap and
persistent bonds are insensitive to the small ballistic motion
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FIG. 10. �Color online� Growth with increasing area fraction of �a�, �c� times at which the three dynamic susceptibilities �Q���, �A���, and
�B��� become maximum and �b�, �d� the domain sizes for the spatial dynamic heterogeneities as deduced from Eqs. �4�, �8�, and �11�. Best
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of grains as they rattle in a cages of fixed nearest neighbors.
At late times, past the peak, the persistent bond is the last to
decay since a few neighboring beads remain in close contact
as they diffuse through the sample. Thus, while all three
susceptibilities give the same picture of the spatially hetero-
geneous dynamics, they offer different possibilities for char-
acterizing short- and long-time dynamics. As applied to the
change in behavior with increasing bead packing fraction, all
three give characteristic time and length scales for the dy-
namical heterogeneities that appear to diverge in accord with

simulation results for supercooled liquids and for dense
athermal systems of soft repulsive particles.
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